An Exchange Evaluator

for Computer Chess

Dan and Kathe Spracklen
10832 Macouba PI
San Diego CA 92124

Three main tasks are basic to computer
chess: generation of moves, evaluation of
positions and selection between alternatives.
Of these three, the central determining factor
in the strength of the program relative to the
capacity of the host machine is the evalua-
tion segment. The reason for this is that
any program must come to grips with the
task of move generation, and various tech-
niques of “pruning’”’ decision trees are by
now widely known. Furthermore, the smaller
and slower the host machine, the more
importance must be assigned to the evalua-
tion facility. If a search can be carried to a
great depth of p/y, inaccuracies can generally
be corrected long before the machine has
been committed to a costly line of play.
(A ply is a move by one player, ie: half of
a complete move involving both players.)
On the other hand, if processing limitations

White Black
Byte Byte
Count ; 1 8
Pawns 2 9
Knights 3 10
Bishops 4 "
Rooks 5 12
Queen 6 13
King T 14
Bit I 766 432170 Bit 7 6 543 210

Table 1: Format of the attacker’s array, a 14 byte array divided into two sec-
tions, seven bytes for White and seven bytes for Black. The first byte of each
section contains the number of attackers (or defenders) in the array. The
other six bytes contain the values of the pieces participating in the attack un-
der analysis. Since no more than four bits are required per piece, two pieces
are stored per byte and the array has a fixed format. The routine that fills the
array assigns the first attacker of a given type to the low order four bits of the
byte. A subsequent attacker of the same type is added by shifting up the low
order four bits and inserting the new attacker.

16 November 1978 © BYTE Publications Inc

prevent a critical exchange from being
examined to its conclusion, then not just
accuracy but clairvoyance is demanded. Thus
an attack evaluator assumes tremendous
importance in a microcomputer chess pro-
gram, much more so than in a large scale
machine. But the limitations placed on the
programmer of an 8 bit machine make it
correspondingly more difficult to achieve
this type of predictive power. The ability
of Sargon (a chess playing program we
wrote in Z-80 assembler language) to accu-
rately forecast the outcome of an exchange
has been the greatest single factor in its
success.

Some Tactical Considerations

First, consider the capabilities desired
of the routine. Assume that the computer
is faced with evaluating the board position
in figure 1. Black possesses a dangerous
passed pawn that White has blockaded with
a Knight. White is piling up attackers on the
pawn and presently assaults it with King,
Queen, and from behind the Queen, a
Bishop: a total of three attackers. Black
defends with Queen, Rook, and Knight,
but the Black Knight is pinned against the
Black King by White's Bishop, so Black
really only has two usable defenders. Does
this mean the pawn is lost? No, consider the
order in which the exchange would occur.
The King cannot legally capture first and the
Bishop is behind the Queen, so the Queen
must be the first taker. When Black responds
with Rook takes Queen, Black has gained
considerable material and is under no obliga-
tion to go any further with the exchange.
To summarize the subtleties involved, the
program must recognize transparent attacks
through its own pieces which move in the
same direction. It must recognize pins (and
partial pins such as a Rook pinned along
a rank or file). It must understand the
relative values of attacking and defending

pieces, and, finally, it must realize that the
exchange may be terminated at any point
by either side. Pins are a whole topic in
themselves, and Sargon’s pinned piece
routines will not be discussed in any detail.
Instead, we shall concentrate on the exchange
routine itself, which weighs the relative
merits of the battles engaged on the board.

The Data Structures

The basic data structure used by the ex-
change evaluator is the attackers array. It is
a 14 byte area divided into two sections,
seven bytes for White and seven for Black.
The first byte of each section contains the
number of attackers (or defenders) con-
tained in the array. The other six bytes in
each section store the piece values of the
pieces participating in the attack. Since no
more than four bits are required, two pieces
are stored per byte, and the array has a fixed
format. Table 1 illustrates the arrangement
within a section. The routine which fills the
array assigns the first attacker of a given
type to the low order four bits of the byte.
A subsequent attacker of the same type is
added by shifting up the low order four bits
and inserting the new attacker in its place.
The instruction used to implement this is
the rotate left digit (RLD) (see figure 2).
If a piece attacks from behind the Queen,
such as the Bishop in figure 1, it is placed
in the high order four bits of the Queen
byte. From that position it will not come
into play in the attack until after the Queen
has captured. It is possible for two Rooks
to attack through the Queen. In this situa-
tion one Rook is stored behind the Queen
and the other in the King byte, pushing him
up behind the Rook if he is involved in the
attack. (By the rules of chess, the King can-
not capture unless all defenders are ex-
hausted, so he is properly placed behind the
Rook.)

A note about overflows: the table is nec-
essarily limited in size and is adequate for
all the pieces originally on the board. If
pawn praomotions result in multiple pieces
and a table overflow occurs, the excess
pieces are ignored in evaluating the exchange.

An Overview of the Exchange Evaluator

The exchange evaluator (XCHNG) oper-
ates on a prefilled attacker's array. The
array itself is filled by the aftack save
(ATKSAV) routine as attackers are dis-
covered by the attacker’s routine (ATTACK).
The latter two routines are important, and
recent changes to them have resulted in a
significant improvement in the performance
of Sargon, but they are not discussed in this

/R

\

%

!

\
D
\\
N
N\

p@)
_

=
[
\

\ \ \
By

%

S

A
N\

\

7 7 7
_ . _

7 7 7
B :

o
\%

.
.

_

_

NN
N

=
.

% Z

\

7

article. The attacker’s array describes a
specific battle over a given occupied square.
The player who occupies the square is the
defender and the player with the opposite
color is the attacker. The attacker’s section
is examined for the lowest valued attacker.
That piece is compared in value to the piece
on the occupied square. If the attacker is
lower in value than the defended piece, we
know at once that we can win material by
capturing that piece. We don't yet know
how much, because the piece may have been
totally undefended, or it may be that our
lower value piece will be captured in return.
For example if our Bishop attacks an enemy
Rook, we can be sure at least of “winning
the exchange’ (a phrase chess buffs use to
describe trading a Rook for a minor piece,
ie: for a Bishop or Knight). But to find out
whether the whole Rook is ours for free or if
we must give up our Bishop in return, we
must toggle the attacker/defender roles,
since our Bishop now occupies the square,
and run through the analysis again. Of
course back when the Bishop was retrieved
from the attacker's array, it was also re-
moved, the attack count decremented, and
its position filled with zeroes.

The evaluation is not so obvious when
the attacker is of higher value than the piece
on the occupied square. In this case there are
only two situations in which you would
want to capture. One occurs when the at-
tacked piece is totally undefended, and the

ACCUMULATOR 2 wils 0
(REGISTER A)

MEMORY 7 al3 o
LOCATION

Figure 1: Sample board
position. White's Bishop is
indirectly attacking the
pawn, so the value of the
Bishop is stored in the
high order four bits of the
Queen byte (which is
directly attacking the
pawn) in the attacker’s
array. See table 1.

Figure 2: The Rotating
Left Digit (RLD) instruc-
tion, used to add attackers
to the attacker’s array.

Movember 1978 @ BYTE Publications Inc 17

FETCH ATTACKER
AND COMPARE
TO PIECE

ATTACKER
OF GREATER
VALUE THAN PIECE

2

Figure 3: Summary of the
flow of exchange evalu-
ation. If the attacker is of
the same value as the piece
under potential attacRr,

material cannot be [ost by SRS VRLYE
swapping, and the piece DEFENDER
may in fact be taken for
free. To determine the
potential for winning
material, assume the cap-
ture takes place, switch
(or “toggle”) the roles of
defender and attacker and
run through the analysis
again. i

DEFENDER
OF LOWER VALUE
THAN ATTACKER

CHALK Uup
POINTS GAINED
AND TOGGLE

The use of computers for industrial automation is sky-
rocketing, and engineers are needed to design them. If you're
stalled in your present position, we have the opportunities to
challenge you. If you are a degreed engineer with hardware or
software design experience, call or write Dick Conklin, (216)

943-5500.
Babcock &Wilcox

Bailey Controls Company
29801 Euclid Ave.
Wickliffe, Ohio 44092

An Equal Opportunity Employer M/F

Movember 1978 © BYTE Publications Inc

Circle 27 on inquiry card.

other occurs when the attacked piece is
defended by a piece of the same or higher
value, and we can back up the attack with
yet another attacker. Suppose, for example,
our Queen attacks an enemy pawn. If the
pawn is completely unguarded, we can, of
course, take it for free. We might also want
to take it if it is defended by the opponent’s
Queen and we can recapture with, say, a
Bishop which attacks from behind our
Queen. But any time the attacked piece is
defended by a piece of lower value than
the attacker, we can terminate the exchange
right there, since it would not be to the
advantage of the attacker to continue. For
example, if our Queen attacked a pawn that
was defended by an enemy pawn, we
wouldn’'t consider making the capture.

If the attacker is of the same value as the
piece on the occupied square, we know we
can't lose material by swapping, and the
piece might be ours for free. So to find out
what we stand to gain, we assume the cap-
ture takes place, switch (or ‘‘toggle’’) the
attacker/defender roles, and run through the
analysis again (see the summary in figure 3).

Quantizing the Evaluation

We now have a general plan for the flow
of the evaluator. What is needed is a means
of gquantizing the results and coming up
with a points total, the exchange residue,
which accurately describes that particular
battle. The exchange residue is zero at the
onset of the analysis and will be adjusted
up or down as the evaluation proceeds. At
each iteration the number of points at
stake is the value of the piece which cur-
rently occupies the square in question. If
the analysis calls for a capture on the first
iteration, the points at stake are added to
the exchange residue. Thus the exchange
residue will contain the number of points
lost by the initial defender (or, conversely,
won by the initial attacker). We will main-
tain this frame of reference throughout the
evaluation. If the analysis requires that
attacker/defender roles be toggled, and a
capture occurs on the second 'iteration,
the points at stake would be subtracted
from the exchange residue. Suppose we
again have a situation where our Bishop
attacks an enemy Rook. The points at stake
are the assumed value of the Rook, and
let’'s suppose we value the Rook at five
points. We know the analysis will call

for Bishop takes Rook, so at that time

the five points for the Rook will be added .
to the initially zero exchange residue. Then

BlLA CK Attacker’s Array:
’,,« % ?/j; Count 3 2
! ?7 i % //@% Pawns 1 pt
; /0, 7
f/ ‘ 7;/;’/5 1 % Knights 3 pts 3 pts
4 /, éi// JV /f; Bishops 3 pts
SRR / s %ﬁf ;:—'f Rooks
o
Z /f/ ; ‘ /%/ /// Queen 9 pts
% % Zh 7 %f
7 7 a 7 % King
=71 % % % White Black
B A
4! é'//;?;? I
/ Z }%/97 Points Attacker’s Defender's Exchange
4 7 7 g At Stake Value Value Residue
2 %
// 'f’*’ 2 7 Onset 2 - - 0
-f‘--?/'xi A Dt 2 3 5 3
First (Black (White (Black Black
WHITE Iteration Knight) Knight) Pawn) Defends
(SARGON) 3 1 3 0
Second (White (Black (White White
White to play. Iteration Knight) Pawn) Knight) Defends
1 3 9 1
Third (Black (White (Black Black
Values used are based on the scale: Iteration Pawn) Knight) Queen) Defends
Queen 9 points 3 9 3 No Change*®
Rook 5 points Fourth (White (Black (White White
Bishop 3 points Iteration Knight) Queen) Bishop) 1 Defends
Knight 3 points
Pawn 1 point *Black will not continue at the cost of his Queen.

Figure 4: Analysis of a typical chess battle, in this case at the K4 square, ta-
ken from the game of Keres versus Najdorf, International Tournament at
Margate, 1939. The associated chart shows how the points at stake, attacker’s
value, defender’s value and exchange residue are altered at each successive
iteration.

the attacker/defender roles are toggled,
and if our Bishop, worth say three points,
is recaptured, those three points would be
subtracted from the exchange residue leaving
a current residue of two points. If the battle
continues, on the third iteration the points
are again added, and on the fourth sub-
tracted, etc. Figure 4 gives a typical battle
and the associated chart shows how the
points at stake, attacker’s value, defender’s
value and exchange residue are altered at
each successive iteration.

A note on the bounds of the exchange
residue is pertinent here. The exchange res-
idue will always be a positive number. This
is clearly so, since for it to go negative the
attacker would have to engage in an unsound
exchange, such as the Queen capturing a
pawn defended by another pawn as in a pre-
vious example. Such an exchange would be
a blunder. We will assume that this won’t
occur on the part of our opponent, and we
will eliminate it from our moves. The ex-
change residue will also have as a maximum

20 WNovember 1978 © BYTE Publications Inc

the number of points at stake initially,
since the defender will not make a move that
will cost more than has already been lost.
Thus, 0 < exchange residue < value of
attacked piece.

Programming the Evaluator

Great care is necessary in coding the
routine, since it must be executed once for
every attacked piece on the board. If we
assume that an average of five pieces will
be under attack at a time, this means the
routine will be executed five times for every
board evaluated. Since typically 5,000 to
12,000 board positions will be evaluated
by the most recent version of Sargon using
a 4 ply search, this means the exchange
evaluator may be executed up to 60,000
times in determining a single move. So an
inefficiency in execution time as slight as
needlessly pushing and popping four registers
would be magnified to a total cost of three
seconds (assuming a 2 MHz clock) in the
time required to process a single move. For
this reason chess programmers must quickly
become familiar with the relative execution
times of their machine's instructions. If the
exchange evaluator seems obscure, the

AF

BC

DE
HL
IX

Table 2: Map of the re- &
gisters used by the ex-
change evaluator.

AF’
BC'
DE’

HL" }

Table 3: Map of the BC,

DE, and HL registers used BC
by the attacker/defender G
routines.

HL

Listing 1: The Sargon ex-
change evaluator, written
in Z-80 assembler language
with TDL mnemonics.

Note: A documented source
listing of the entire Sargon
program is available for $15
from Dan and Kathe Sprack-
len, 10832 Macouba Pl, San
Diego CA 92124.

22 MNovember 1978 © BYTE Publications Inc

blame lies in just such considerations.

Since nearly every register in the Z-80
processor is utilized in the routine, a map
is provided for reference in the discussion
(see table 2). Although Sargon is coded in
Z-80 assembler language using TDL mne-
monics, no prior knowledge of the specific
instructions is assumed. However, it is
assumed that the reader is familiar with
some microprocessor assembly language.
Two routines are described: XCHNG, which
performs the actual evaluation, and
NEXTAD, which searches the attacker’s

~ array for the next attacker or defender.

Using the Exchange Residue

The exchange evaluator has completed its
work once it has returned the outcome of
the battle. But the evaluation segment is by
no means complete. Information gleaned
by analyzing attacks must be blended with
data concerning piece mobility, develop-
ment, total material and any other heuristics
included in the program. The total picture is
the responsibility of a routine called
POINTS, which is not discussed here. But it
is useful to see how POINTS makes use of
the information returned by XCHNG.

The exchange evaluator must be called
to examine every potential battle on the

The TASA Keyboard

Features:

[0 51 Keys, with entire 128 posi-
tion ASCI| code output.

All keys identified as to Un-
shift, Shift and Control outputs.
Full 8-bit ASCII output with
selectable positive or nega-
tive parity.

Single power supply, 12.5 -
20V unregulated.

Output TTL, DTL and CMOS-
compatible.

Full solid state design with no
moving parts.

Standard PC edge connect-
er.

Use on any flat surface, or with
Optional plastic support
stand (as shown)

O

O

8 1, v [o M [O S

Touch Activated Switch Arrays, Inc.
2346 Walsh Avenue, Santa Clara
California 95050 (408) 247-2301

NAME

ADDRESS

cITY

STATE ZIP

Enclosed is my check for $
to cover:

_____ TASA Keyboards

@ $49.95— $
— Optional stands
@ $12.00— $
Shipping and handling
charge at $5.00
per keyboard— $
SUBTOTAL—%

Sales Tax, 6%—%
(California residents only)

TOTAL ENCLOSED §
9/78
Price subject to change without notice

Circle 363 on inquiry card.

XC10:

XCl15:

XCl8:

XC19:

XC20:

NEXTAD:

NX5:

NXé6:

CALL

RZ
MOV
CALL
JRZ
EXAF
MOV

JRNC

EXAF

CALL
RZ
MOV

CALL
JRNZ

EXAF

MOV
JRZ
NEG
ADD
MOV
EXAF
MOV

INR
EXX

MOV
MOV
MOV
XCHG

XRA

JRZ
DCR

INX
CMP

JRZ
RRD

DCX

EXX
RET

NEXTAD

LA
NEXTAD

XCl18

AB
XC19

NEXTAD
LA

NEXTAD
XC15

A,B
0,C
XC20

NX5

The index is loaded into the IX index
register and then the value of the piece un-
der attack is loaded into the B register. So
register B contains the number of points at
stake in this attack.

Getting the value of the next attacker in
register A. NEXTAD also sets the zero flag
if there are no more attackers.

Return if no more attackers.

register A, and setting the zero flag if no
more defenders.

If no defender, the piece is lost. Go chalk up
points gained.

Save the defender by swapping AF and AF’
registers.

Move the value of the attacked piece into
the A register to then compare its value to
that of the attacker. Branch to XC19 if the
value of the attacker is not greater than the
value of the piece, to chalk up points gained
and toggle.

To reach this point, the attacker must be
worth more than the piece under attack. So
it is necessary to consider the value of the
defender. This instruction swaps A and A’
igain to restore the value.

Compare the value of the defender to the
a er. If the defender is worth less, return.
It will not be to the attacker's advantage to
continue the exchange.

Otherwise get the value of the next attacker.

Ram.m if none. If the defender is worth the
or more than the attacker, the ex-

change should continue, provided there is

another attacker avaﬂahle to recapture. Save

the new attacker's value in the L register.

Then find out if there are any more de-

fenders to contend with. If so, jump back to

XC15 and repeat the process.

The exchange is terminated. There are no

more defenders. The zero flag is set, so save

it by swapping AF and AF'.

Get the value of the attacked piece.

Test for attacker’s or defender’s side.

Skip if on the attacker's side. Otherwise

negate the value of the attacked piece. (On

successive iterations the value is alternately

added and subtracted.)

Add the previous exchange residue to the

new points won or lost and store the result

as the new exchange residue,

Restore the last defender and the zero flag.

Return if there are no more defenders.

The last attacker becomes the new defender.

Move his value into the B register and return

to XC10 for another iteration.

Increment side flag.

Swap registers BC, DE, HL for BC', DE',

HL', getting the set that contains the at-

tacker and defender counts.

Swap attacker and defender counts.

Swap attacker’s array pointers. The register

map is now as in table 3.

Zero the A register and compare it to the

attacker count. Go return if there are

none.

Otherwise decrement the count, since one

will be removed from the array.

Check the next byte of the attacker’s array,

looking for an attacker.

If not in this byte, go check the next.

Otherwise rotate the attacker into the A

register. The rotate right digit (RRD) is the

reverse of the rotate left digit illustrated
figure 2.

Decrement HL to back up the pointer. With

two attackers stored per byte, the routine

will return to the same byte to look for the

next one.

Swap registers BC, DE, HL and BC’, DE’

and HL.' back again.

Return.

Movember 1978 & BYTE Publications Inc 25

Figure 5: Potential problem arising from the
author’s evaluation scheme: White's Knight
is attacking the Black King and RooR, for
which White gains 3/4 of the Rook's value.
The Knight is doomed to be captured by
Black’s Queen, but subtracting the Knight's
value from this number still gives White an
illusion of material gain. The authors
avoided this problem by having the program
check to see if the piece that has just moved
is subject to capture.

board for a given position. In some of the
attacks, the side which has completed a
move will have lost points. In others the
side about to move will be in danger of
losing material. As battles are evaluated one
by one, the highest points lost for the side
having moved is maintained. This value
represents the amount of material this
side stands to lose, and it is subtracted
directly from the material score. Two scores
are maintained for the side about to move:
the highest points lost, and the second
highest points lost. Both values are saved,
because it is assumed that this side will
always use its move to rescue its highest
value piece. Then only 3/4 of the value is
deducted for the loss of the second highest
piece, since deducting the entire value
would make attacks look as good as cap-
tures (see the text box for an example of
this procedure). Bonus points are given to
each side for additional battles won, but this
is still experimental and may not be needed.

One problem that arose with this eval-
uation scheme was the Knight's tendency
to engage in useless forks. In figure 5 we see
White's Knight attacking the enemy King
and Rook, for which White gains 3/4 of
the Rook’s value. The Knight is of course
doomed to be captured by the Queen and

e

: S : e
1 i T e e
o .t P TR e = 5
S i e 3 3 2
e ESHE S e e R
: SR T e
' A = 2

e e

5 Rl

T 3 =

T i

§
LAl

Ielpars 48-Column =
PS-48E...$350. Illl’*‘

KEY FEATURES INCLUDE:

@ Microprocessor controlled

@ Versatile interface (no added charge)
Serial: RS-232C, 20 mil loop, or TTL
Parallel: TTL interactive

m Upper/lower case, 96 ASCIl characters

@ Throughput rate — 24 characters per second

m Signalling rates e
Serial mode: 110 or 300 Baud L
Parallel mode: up to 960 cps e

= Automatic carriage return and line feed

= Thermal printing, no ribbons or ink

In qﬁantities of 100

. $350.00

Single quantity $450.00

SR e e LR

26 November 1978 © BYTE Publications Inc

For more information contact Telpar, (214) 233-6631

tEl QP lnc 4132 Billy Mitchell Road, Box 796, Addison, Texas 75001.
3 ® Telex: 73-7561 (Teleserve) DAL.

Circle 372 on inguiry card.

-

%/ﬁ% 4,
#?%K 4%
on .
7 7
@ 2 #
77
% ,4 s 425;”/’ //%V
e
%
fifé/i 7 é /é
WHITE
(SARGON)

Making an Immediate Capture More
Attractive Than an Attack

In the diagram, the program (White) has
two attractive moves: capture the Bishop,
or move the Knight so that it simultaneously
attacks the Black Rook and the second
Bishop. The program assumes that in the
latter case Black will protect the Rook (the
more valuable of the two pieces) by moving
it away. The decision then reduces to one of
capturing the first Bishop orsimply attacking
the second Bishop. In order to insure that
the capture takes place, the program assigns
3/4 the normal value to the second Bishop
so that the capture looRs more attractive.
The drawback to this technique is that it
precludes the possibility of intentionally
avoiding an immediate capture for strategic
purposes; this would require a much more
complicated program, of course.

Table 4: Second order at-
tacks. This type of attacR,
including pinned pieces,
overworked pileces, dis-
covered attacks, and so on,
is not considered in the
exchange evaluator de-
scribed in this article.

28 November 1978 © BYTE Publications Inc

can never carry out its threat, but sub-
tracting the Knight's value still gives White
an illusion of material gain. Sargon avoids
this problem by checking to see if the piece
that has just moved is subject to capture.
If so, we assume that the side about to move
can escape both attacks. The attack with
the highest points lost is ignored completely
and the attack with the second highest
points lost is moved up in its place.

Current Limitations and Future
Developments

The problem of the Knight fork as just
discussed is only one of a whole set of diffi-
culties. Pinned pieces, the overworked piece,
discovered attacks and other motifs can all
occur dynamically during play of a board
position, but are difficult to evaluate stati-
cally. Attacks of this nature are second order
attacks and are not considered in the ex-
change evaluator we described. There are
eight possible second order attacks (see
table 4). The first group are the discovered
attacks and the second group are the trans-
parent attacks. If all of the second order
attacks could be taken into account, the
evaluation would be much improved. Cur-
rently work is being done to accomplish this.
Ultimately, of course, the entire board
should be considered as a single complex
battle. How close to this ideal can static
evaluation progress? At what point does
static evaluation begin to take more time
than the look-ahead itself? Where will com-
promises in the evaluation be least harmful?
Currently in the field of computer chess
there is a tendency to downplay the impor-
tance of look-ahead in future developments.
Has look-ahead reached a dead end? Will it
be replaced by a Sargon-like exchange
analysis? These are open questions.®

Group Type Description
— ey
w1 — B1 w2 W1 attacks B1. If B1 moves, W1 defends W2.
Wi w2 w3 W1 defends W2. If W2 moves, W1 defends W3.
Discovered —_—
Attacks W1 - B1 B2 Wi a;:tacks B1. If B1 moves, W1 attacks B2.
(PIN
W1ﬁ;‘*31 W1 defends W2. |If W2 moves, W1 attacks B1.
W1 - B1 =+ W2 W1 attacks B1. B1 attacks W2. W1 defends
W2 through B1.
w1 T—mwa W1 defends W2. W2 defends W3. W1 defends
Transparencies W3 through W2.
w1 - B1 —+ B2 W1 attacks B1. B1 defends B2. W1 attacks
B2 through B1. (PIN)
w1 w2 > B1 W1 defends W2. W2 attacks B1. W1 attacks
B1 through W2.

