Listing T (opposite): The first half of Chess 0.5, written in Pascal. The second half of the pro-
gram will be presented in part 3 (December 1978 BYTE) of this series. The portion of the
program presented here covers initialization of the program, variable declaration, manipulation
of the “bit boards” (used to represent positions on the chessboard), user print routines and
move generation. The second half of the listing will include procedures for evaluation of ter-
minal positions, the look-ahead procedure, and user commands.

Creating

a Chess Player

Chess 0.5

Part 2:

Part 1 of this series (*‘Creating a Chess Player,” October 1978 BY'TE,
page 182) was an essay on human and computer skill. This month and
next we present Chess 0.5, a program written in Pascal by Larry AtRin,
who is coauthor with David Slate of the world championship computer
chess program Chess 4.6. The program is readily adaptable to per-
sonal computers having Pascal systems such as the UCSD Pascal project
software. Part 4 of the series will conclude with some thoughts about
computer chess strategy.

Peter W Frey

Dept of Psychology
Northwestern University
Evanston IL 60201

Larry R Atkin

Health Information Services
542 Michigan Av

Evanston IL 60202

Note: The Pascal subset
described in “A ‘Tiny’
Pascal Compiler” (page
182) is not compatible
with the more sophis-
ticated Pascal used
here. . . .CM

162 November 1978 © BYTE Publications Inc

We have attempted to incorporate several
features which make the search process more
efficient and others which increase the
user’s options. Both of these enhancements
are important. The first set of features
(incremental updating, iterative searching,
staged move generation, etc) were described
in general terms in part 1. These features
reduce computation to the point where a
move can be selected in a reasonable amount
of time even with a full-width search. The
second set of features (special control and
print commands, accepting chess moves In
standard notation) not only add to the
pleasure of using the program, but also make
the debugging process much easier. The price
for these enhancements is a longer, more
complicated program. We hope the length
of our listing will not discourage the reader
from becoming actively involved.

Pascal was developed to provide a logical
and systematic higher level language which

could produce reasonably efficient machine
code for existing hardware. Computer pro-
grams can be conceptualized in terms of
two essential parts, descriptions of data and
descriptions of actions which are to be per-
formed on the data. Pascal requires that
every variable occurring in the program be
introduced by a declaration statement which
associates an identifier and a data type
with that variable. The data type defines the
set of values which may be assumed by the
variable. Since a chess program involves a
large number of variables, our program
begins with a long list of declaration
statements.

A constant definition introduces an iden-
tifier as a synonym for a constant. This is
very useful since the value of the constant as
stated in the declaration list can be changed
at some later date, and this change will then
be reflected throughout the program in
every place where the constant is used. In
the chess program, the values of some of
the constants depend on the characteristics
of the user’s hardware. For example, the
values of ZK (maximum search depth) and
ZW (move stack limit) will reflect the amount
of memory which is available on your sys-
tem. On personal computers, ZX will gen-
erally be set at 7 if you have an 8 bit proc-
essor and at 15 if you have a 16 bit proces-
sor. Note also that the value of PZXS8
depends on the value of ZX. To implement
this program on a given computer, it is
necessary to insert at the beginning of the
program the appropriate values for these
constants.

For the sake of clarity, specific data types
are declared for a number of different chess
concepts and for certain useful indices. The
program also takes advantage of the different
properties represented in Pascal’s data
structures: the set, array and record. It is
unlikely that anyone will immediately
memorize the names of all the variables.
Therefore it is useful to have them listed
at the beginning where they can easily be
found for later reference.

There is a comment statement accom-
panying almost every instruction in the
program. Although these brief statements

PROGRAM CHESS{INPUT,OUTPUTH §

LABEL
1 (* INITIALIZE FOR & WEW GAME =)
24 {* EXECUTE MACHIMNES MOVE *)
93 (* END OF PROGRAM *)
CONST
AA = 1% IA = 103 (* CHARACTERS IS A WORD =)
AC = A®y IC = “,*j (* CHARACTER LIMITS =)
AD = =2153°7TD = +21% (®* DIRECTION LIMITS =)
A = 0% F) = T3% (®* CHARACTERS IMN A STRING *)
AKX = 03 TK = 163 (®* SEARCH DEPTH LINWITS *)
AKHZ = =23 i AK=2 =)
IKPL = 17} * Zis1l *®=)
AL = B3 TL = 119; (* LARGE BOARD YECTOR LIMITS =)
AL = =119% TAL = 119% {* LARGE BOARD DIFFEREMCES
LIMITS =)
AM = 13 TH = 30 (* MESSAGE LINITS *)
AS = p7 IS = B3 {* BOARD VECTOR LIMITS =)
AT = =4t IT = 633 {* BOARD VECTOR LIWITS ANOD
AMOTHER WALUE *)
AY = =32TRTT] IV = +32TaT: (®* EVALUATION LINITS =)
AWM = 1% Iw = SE0% {* MOVE STACK LIMITS =)
AX = Qf IN = 314 {* SUBSETS OF SQUARES =)
AY = 0% IV = 1} {* ARRAY OF SUBRSETS TO FCRM A SET
OF ALL SQUARES OM BOARD =)
LPP = 20% i* LINES PER PAGE *) N
PIxA = 1BTTTZ1i6; 1* 2=1Z%=71 =)
SYNCF = 1% (* FIRST CAPTURE SYNTAX =)
SYNCL = 363 (® LAST CAPTURE SYNTAX *)
SYNHF = 373 (* FIRST MOWE SYNTAX =)
STYHML = LT3 (® LAST MOWE SYWTAX =)
TYPE
1* SIMPLE TYPES *)
TA = Al..TA; {* INDEX TD WOFDS OF CHAR =)
TR = BOOLEAM: (* TRUE OR FALSE *)
¢ = CHAR: (* SINGLE CHARACTERS *)
TD = AD..TD: (* DIRECTIONS *)
TE = (31,82+83,B4 51,52 45395k N1 M2 T Ma NG, MEMT,NB)
(* NUMBER OF DIRECTIONS =)
TF = IFlsF2 F3;FLFEF&;FTFAD; {* FILES ")
TG = (PQ,PR,PN,PR) I {* PROMOTION PIECES =)
TH = [HO«HL HZ HI Hi HE, HEHT)]
(* TREE SEAFCH MODES =)
TI = INTEGER: (* HUMBERS =)
TS = LoDt (®* INDEX TO STRINGS =)
T = AK,,TK: [* PLY INDEX *)
TL = ML..2L: {* LARGE (10%12) BOARD *)
TH = (LITE.DARK,MNOMNE)} (* SIDES =)
TH = AM..ZM} {* INDEX TO MESSAGES *)
TP = (LPyLR+LMNyLB,LOLE,OP,0R,OM;08,00,06,MT) T
{* PIECES? LIGHT PAWM, LIGHT
ROOKs sse + DARKE KINGy; EMPTY
SAQUARE =)
TA = (LS+LL,DS4DL) (* QUADRAMTS *)
TR = (RL,R2,RI,R4 RS, ARG, R7,RB)} (" RANKS =)
TS = AS..I5% {®* SQUARES =)
TT = AT..IT} (®* SQUARES,; AND ANOTHER WALUE =)
TU = (EPLER,EMERB,EQ.EK)} {* TYPES: PAWM,; ROOK:; sus &
KING =)
TV = AV..IV} (* EVALUATIONS *)
THW = AW,..IW} (®* MOVES IMDEX *)
T = AN..TX% {* SOME SQUARES *)
TY = AY¥..IY] (* MUMBER OF TX*S IM A BOARD *}
TZ = REAL: {* FLOATING POIMT NUMBERS *)
{* SETS =)
SC = SET QF AC..IC} i{* SET OF CHARACTERS *)
SF = SET OF TF: (* SET OF FILES *)
sQ = SET OF Ta: (* SET OF CASTLING TYPES *)
SR = SET OF TR: (* SET OF RAWKS %)
SX = SET OF Tux} (* SET OF SOME SQUARES =)
(* RECORDS *®=)
RB = RECORD (* BOARDS *)
RATH 1 TH: (* SIDE TO HMOVE *)
RBTS 1 TT: (* EMPASSANT SOUARE *)
RBTI © TI3% i* MOVE MUMBER *)
RB3Q 1 5@3% (* CASTLE FLAGS *)
CASE INTEGER OF
01 (RAIST ARFAY [TS) OF TP) 3% {* INDEXED BY SQUARE *)
11 § RBIRFy ARRAY [TF,TF] OF TPI:1* INDEXED BY RANK AND FILE #*)
ENDS
RA = PACKED ARRAY [TA)] OF TC: {* WORDS OF CHARACTERS =)
RC = ARRAY [TS) OF TP% (* BOARD VECTORS *)
RW = PACKED ARRAY [TM] OF TC% (* MESSAGES *)
RJ = PACKED ARRAY [TJj) OF TC: 1* STRINGS *)
RO = PACKED RECORD (* SYNTAX DESCRIPTOR FOR
SINGLE SQUARE *)
ROPC 1 TH! {* PIECE *)
ROSL 1 TAS (* s ®)
ROKQ 1 TH; (* ¥ OR O *=)
RONB 1 TH} (* Ry N, OR B =)
RORK 1 TA: (* RANK =}
END}
R = RECORD (* KLUDGE TO FIND NEXT BIT =)
CASE INTEGER OF
0t (RKTBt SET OF Duobl)3 (* BITS =)
1t (RETZ: TId: {® FLOATING POINT NUMBER *)

END}

RH = PACKED RECORD

RMFR
RMTO
RMCP
RHCA
RHAC
RMCH
RHNT
RMIL
RHSU
CASE
FAL

CASE RMOO 1
FALSE

1 T53
1TSS
1 TP:
t Tag
T Tat
1 TAai
1 TB;
1 TB:
i TEs
RHPR 1
SEs |

TRUE
Vi

Te OF

T8 OF
(RMEP 1 TB){
(RMQS ¥ TB)}

TRUE 1 ({RMPP 3 TG)}

END3Y

RS = RE
CASE
04
11
END?

CORD

INTEGER OF

(RSSST ARRAY [TY] OF 5%)3
(RSTI1 ARRAY [TY) OF TI)}

ARRAY [T5) OF RS;

RY = PACKED RECORD

RYLS
RYCH
RYRS
END;

RE
RF

VAR
(* DATA

BOARD
NAORD
ATKFR
ATKTO
ALATE
TPLOC
THL OC
MOVES
VALUE
ALLOC
BSTHY
BSTVL
CSTAT
ENPAS
GEHPH
GENTO
GENFR
HAVAL
MYSEL
IMDEX
KILLR
LINDX
SRCHH
GOING
LSTHY
HANPS
MBL TE
HAPWN
HATOT
MODES

R B BN R S R B G R R R O o O S e e e R e R e e

JHTE
JHTK
JHTH
JHTH

-

(* LETS

FEKPSHD
FXSANG
FHAXMT

FNODEL
FPADCR
FPAELOK
FPCONY
FPFLNX
FROWAL
FRETTH
FTRADE

FTROSL

FTRPOK

FTRPWN
FMEING
FuMAJH
FHMINA
FHPAWN
FHROOK

WINDOW

(* SWITCHES *=)

SHEC @
SHPA 1
SHPS
SHRE 1
SM5U 1
SHTR
i® COMH
ICARD 1@
ILINE 1
JHTID
JHTJ 1

1 RD%
1 TC3
1 RDY

ARRAY [TW] OF Tw3
ARRAY [TW] OF REM:

BASE *)

L1 H

ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
TIs

RM3

Tv:

T}

ARRAY
T3

TI:

Ty
TS
TH:
TH3

TI:
TI:
TIZ
TI:

TI
TI:
TI:
TIt
TI
TI:
TIi
TIt
TI:
TI;
TI}
TI%
T1;
TI
TI:

O O B SR B M G B R W M W e -

183
TRy
e
T8
8%
e

AMD PROCESSING DATA *)

LW
RJ3
TJ3
TJdi

ARRAY [TF]

L7511 OF
[T5]1 OF
[TS) OF
ITH) OF
(TP] QF
[TH] OF
[TW) OF
[TW] OF
I[TE] CF
[Tl OF

[AKH2 ., . 7KPY])

[TK] OF
[TK] OF
[TK) QF
[TK] OF
[TK) OF
[T OF
[TK) OF

[AK..7KPL] OF Tu§

[TK] OF
[TK] OF
[TK] OF

[TM] OF

TP
R5%
RS %
753
RS
R5 %
RME
T3
RS
TWi

RS+
RS %
RS}
RS}
RS}
LR
TI:

Tu:
THE

TIs

oF TI:

i®
i®
e
[
i+
(=
ie
(=
i=
(=
[I
=
(=
L

i=
(R

[
[
(s
[

[
[

i
[
R
(=
ie
i=
=
=
i
[
i=
(=
i=
ie
{‘-
'I-
i
=
[*
(*
i*

=
i*
i*
[
i*
(=
=
i*

[
(=
ie
i*

[R
i=
[=
.l'l
i=
[=

Movember 1978 © BYTE Publications Inc

HOVES *)

FROHM SQUARE *)

TO SQUARE *)
CAPTURED PIECE *)
CAPTURE *=)
AFFECTS CASTLE STATUS =)
CHECK *)

MATE *=)

ILLEGAL *)
SEARCHED *)
PROMOTION *)

CASTLE *)
ENPASSANT *)
QUEEM SIDE *)

PROMOTION TYPE *)

BIT BOARDS *)

ARRAY OF SETS *)
ARRAY OF INTEGERS *=)

ATTACK HAPS *)

MOYE SYNTAX DESCRIPTOR =)
LEFT SIDE DESCRIPTOR =)
HOVE OR CAPTURE *})

RIGHT SIDE DESCRIPTOR *)

ARRAY OF VALUES *=)
ARRAY OF MOVES *)

THE BOARD *})

LOOK=AHEAD BOARD =)

ATTACKS FROM A SQUARE *)
ATTACKES TO A SQUARE =)
ATTACKS BY EACH COLOR *)
LOCATIONS OF PIECE BY TYPE *)
LOCATIONS OF PIECE BY COLOR =)
MOVES ®*)

VALUES *)

ALL PIECES *)

BEST HMOVE S50 FAR *=)

VALUE OF BEST MWOVE *®=)

CASTL ING SQUARES *)

EMPASSANT SOQUARES *)

PAWN ORIGIMATION SQUARES *)
HOVE DESTINATION SQUARES *)
MOYE ORIGIMATION SQUARES *)
MATERTAL BALANCE VALUES *)
COUNT MOVES SELECTED 8Y PLY *}
CURRENT MOVE FOR PLY *)
KILLER MOVES BY PLY *=}

LAST MOVE FOR PLY *)

SEARCH MODES *)

HUMBER OF MOVES TO EXECUTE =)
PREVIOUS MWOVE *)

HAXIHUM POSITIOMAL SCORE =)
HATERIAL BALAMCE LITE EDGE *=)
NUMBER OF PAMNS BY SIDE *)
TOTAL MATERIAL ONM WAORD =)
NUMBER OF WODES SEARCHED *)

PLY INDEX *)

ITERATION =)

SIDE TO MOVE *)

MOVES STACK POINTER *)

KING PAWN SHIELD CREDIT *=)
KIMG IN SANCTUARY CREDIT *=)
HAXIMUM MATERIAL SCORE *)

WODE LIMWIT FOR SEARCH *)

PAWM ADVAMCE CREDIT AY FILE *=)
PAWM BLOCKED PEMALTY *®)

PAWNN COMMECTED CREDIT *)

PAWN PHALANY CREDIT =)

DOUBLED ROOK CREDIT =)

ROOK OW SEVEWTH CREDIT *)
TRADE=DOWMN BOMNUS FACTOR *)
TRADE=DOMM TUNING FACTOR *}
PAMM TRADE=DOWM RELAXATION *)
PAWM TRADE-DOWN FACTOR *)

KING EVALUATION WEIGHT *=)
MAJOR PIECE MOBILITY WEIGHT =)
HINOR PIECE MOBILITY MWEIGHT *)
PAWNM EVALUATION WMEIGHT *}

ROOK EVALUATION MEIGHT *)

SIZE OF ALPHA=BETA WINDOW *=)

ECHO IMPUT *)

PAGING =)

PRINT PRELIMIMARY SCORES *)
REPLY MITH HOVE =)

PRINT STATISTICS SUMMARY =)
TRACE TREE SEARCH =)

INPUT CARD IMAGE *)

CURRENT COMMAND *)

CURRENT IMPUT LINE POSITION *)
CURREMT COMMAMD POSITION *=)

163

