1-34 — elektor january 1979

computers and chess

computers

an
chess

_How the monster thinks

The game of chess has long been
regarded as a symbol of man’s
intellectual prowess. Until
recently, the prospect of a chess-
playing computer defeating a
master-strength human opponent
seemed remote. A few months
ago, however, in a much
publicised match an International
Chess Master, David Levy, actually
lost a game to a program from
North America. The story of the
match is recounted by Mr. Levy
himself elsewhere in this issue.
The following article takes a look
at the background to computers
and chess: how they play, their
weaknesses and strong points, and
speculates on the chances of
Karpov being the last flesh-and-
blood World chess champion!

Thirty vears ago, with the electronic
computer still in its infancy and illus-
trating above all else the First Law of
Thermodynamics (*Work is Heat’), the
game of chess attracted the interest of a
number of researchers in the field of
artificial intelligence. The first person to
actually propose how a computer might
be programmed to play chess was the
English Mathematician Claude Shannon.
In 1949 he presenied a paper entitled
‘Programming a computer for playing
chess’, which was significant, both for
the fact that it was the first paper
expressly on this subject, and more
importantly since many of Shannon’s
ideas are still employed in the strongest
chess-playing programs of today.
Shannon’s interest in chess program-
ming stemmed from his belief that the
game represented an ideal test of
machine intelligence. Chess is clearly
defined in terms of legal operations
{(moves of the pieces) and ultimate goal
(checkmate), whilst being neither so
simple as to be trivial nor too complex
to be unsusceptible to analysis.

Board, pieces and moves

Shannon suggested that the machine
represent the chess board by assigning a
location in computer memory to each
square of the board. Each piece is then
designated as a numerical value: +1 for
a white pawn, +2 for a2 white knight,
+3 for a white bishop etc; —1 for a
black pawn, —2 for a black knight, and
s0 on. These numbers are stored in the
memory location which represents the
square occupied by the corresponding
piece. An emply sguare is represented
by storing a zero in the appropriate

location. A number of more recent pro-
grams also adopt this method, with the
exception that a 10 x 12 board is used
instead of 8 x 8, and that a unique
number (such as 99) is stored in all the
off-board locations, thereby allowing
the program to detect the edge of the
board, This is illustrated in figure 1,
where the addresses for each square are
given in the top left-hand corner and the
contents (before the game staris) of the
memory locations are also shown.

The program generates legal moves
simply by mnoting the mathematical
relationship between the addresses of
the different squares. For example, the
addresses for each square may be
assigned as shown in figure 1. Then, to
calculate the possible legal moves of,
say, a king standing on el (square 25)
one adds the offsets +1, +9, +10, +11,
—1, —9, —10 and —11 to that address.
The program then checks the contents
of these new addresses to determine the
legality of the move. If the location con-
tains the number 99, the square is off
the board and the move illegal. If the
location contains a positive number, the
square is already occupied by a white

| piece. If the contents of the location are

negative, on the other hand, the king
can legally move ito that square cap-
turing an enemy piece (always assuming
that the piece is not defended). Finally,
a location containing a zero also rep-
resents a legal move assuming that the
corresponding square is not attacked by
an enemy piece.

Calculating the legal moves for a sliding
piece such as a bishop, is only slightly
more complicated. With a white bishop
situated on square XY (e.g. 54, where
X =35 and Y =4), the program examines




computers and chess

elektor january 1979 — 1-35

address [X + 1, Y + 1] (i.e. 65), checks
to see whether the contents of that
location are zero, and if so proceeds to
examine address [X + 2, Y+ 2] and so
on (if [X+ 1, Y + 1] turns out to con-
tain a negative number, then the bishop
can move to that square, capturing a
piece, but obviously can move no
further along that diagonal). The ma-
chine repeats the above procedure for
[X—l,Y S X —2.¥ =21 etc, then
does the same for [X -1, Y+1],
[X —2, Y+2] etc, and finally for
[X+1, Y-1], [X+2, Y-2] etc. In
this way the program can generate legal
moves along all four diagonals of the
bishop.

Similar operations can be performed to
determine the legal moves of all the
pieces, although one must bear in mind
that certain moves have to be checked
for the existence of pins (is the piece
pinned against the king, for instance)
and the procedure is complicated when
considering castling and capturing en
passant.

A more ‘logical’ approach
The above approach is still adopted by
many modern programs, although an

Figure 1. The puter can rep t the

chess board by assigning a location in mem-
ory to each of the squares on the board.

_ ro————
g R

e A,

i A R s
T & e S e
M ot o
’ R
b -arg Soma
—y {_..*..?m&

1

1 99

~ a b ¢
off
board

A

of Eo R P e 10 R e g S B T

w

|
|

8&
S RS i o e Col IO

| 8
e T ke T2

defgﬂ

alternative method which is particularly
suited for use with large computers has
subsequently been developed. This
utilises the fact that certain large com-
puters operate with 64-bit words. If one
bit is assigned to each square, only
12 64-bit words suffice to represent the
position of all the pieces on the board.
For example, one word will provide
information on the position of all white
pawns on the board by setting a bit to
‘1” for each pawn that resides on the
corresponding square. If a square is
empty the bit remains unset (‘Q).
A second word will represent the pos-
ition of all the black pawns, a third the
position of both white knights, and so
on.

In addition to the position of pieces,
these ‘bit maps’ or ‘bit boards’ as they
are called can be used to represent other
information. For example, one 64-bit
word might represent all the squares
attacked by white’s pieces, another all
squares which are a knight’s move away
from the black king, and so on.

The real advantage of this alternative
approach can be seen if one considers
the instruction set of a modern com-
puter, containing as it does a number of
‘Boolean Logic’ operations. These can be
used to combine considerable amounts
of information stored in bit maps. For
example, assume that we wish to know
whether white has a knight’s move that
will fork black’s king and queen. One
simply fetches two bit maps of potential
knight’s moves from the black king and
queen respectively, and a bit map of
knight moves from their present squares.
Since the square may not be occupied
by a white piece, a map of all white
pieces is inverted and then ANDed with
the first three maps. If the result is
non-zero, then a forking square exists.
Finally, this map is ANDed with a map
representing all squares attacked by
black pieces to determine whether the
forking square is defended. It can be
seen that the above operation takes very
few program steps.

Looking for good moves

Having enabled the program to generate
legal moves, there comes the problem of
selecting the good from the bad. This is
where the difficulties start to accumu-
late. The most obvious approach is to
have the program examine all legal
moves by white, followed by all legal
replies by black, all legal counter-replies,
and so on to a fixed depth.

This procedure, which Shannon called
the ‘type-A strategy’ does however
suffer from a number of serious draw-
backs. The number of legal moves in
each position is on average around 38.
This means that a 2-ply analysis of all
legal moves (i.e., one move each
side; ply = 1/2 move) would produce
38% = 1444 terminal positions to be
evaluated. An analysis only 4-ply
deep would yield 2,085,136 terminal
positions, and a mere 6-ply look-
ahead would involve evaluating some

T T T T S T R R S T e T < A



1-36 — elektor january 1979

computers and chess

2
Ng143 Nb1-e3
4
Nb8-c6 Ng8-16 Nf6-dS
d7-d6 Bf8-c5
5 6 n -] E
+0.1 W02 -—02 -05 +07

ed-e5

d2-d4
17
d7-d5 Ng8-16
18 25
\ Nble3 c2c4 Ng1f3 204 Bel-f4
14 19 22 28 29
e7-e5 dSxcd c7-c5 e7-88 c7<5
Nf6-g8 d7-ds e7-e6 NgB-16 9798 | d7-d5
13 15 1€ 20 21 23 24 27 28 30 31
6 02 W01 -08 08 06 e T T ) 102 407 e
TRO4T 2

3,010,936,389 positions! Because of
this ‘exponential explosion” as it is
called, an exhaustive look-ahead of this
type rapidly becomes unmanageable.

A second disadvantage of a fixed-depth
exhaustive look-ahead is that the
machine may well terminate its search
in the middle of a series of exchanges —
with the result that its evaluation of the
position will be hopelessly wrong. It
may, for instance, be deceived into
thinking it 1s a piece ahead, when in
actual fact it is about to loose a piece
back — or even worse. A fascinating
example of this type of ‘computer
blindness® will be given later — in the
game COKO v. GENIE.

Shannon was well awarc of the inherent
problems of a type-A strategy, and
therefore proposed an alternative model
which he called type-B strategy. The
latter is characterised by the notion of
‘quiescent’ positions, ie. the program is
encouraged 1o continue its search until
all forcing variations are exhausted and
the position for evaluation is ‘static’.
More importantly, a B-type strategy will
not attempt to generaie all legal moves
in a given position, but rather will sslect
a small number of ‘plausible’ moves for
subsequent analysis. This approach
obviously requires that the program
have some criteria by which it can select
the more promising moves from those
which are plainly irrelevant, i.c. that the
program have a ‘plausible-move gener-
ator’.

The interesting feature of the type-B
strategy is that it attemps to simulate
the approach of the most efficient chess
model we know of, namely the human.
Contrary to uninformed opinion, the
chess master does not analyse dozens of
moves deep and investizgate hundreds of
different variations before selecting a
move. Quite the reverse is true. Research
carried out by a Dutch psychologist,

de Groot, revealed that, in a fairly
typical middlegame position, Grand-
masters tended to look at only three or
four different possible moves, and that
the maximum depth to which they
calculated was not much more than
7-ply! However, the grandmaster is
adept at perceiving the critical features
of a position and at selecting an appro-
priate plan. The grandmaster’s assess-
ment of the position is liable to be
much more nuanced than that of the
amateur; he has ‘seen” more deeply and
recognised the truly salient, functionally
important features. The story is told of
the great Czech grandmastier Reti, who,
when asked how many moves ahead he
normally calculated during a game,
replied ‘as a rule, only one’. Grand-
masters think much more in terms of
general strategy and the formulation of
suitable plans than in terms of specific
sequences of moves.

For the chess programmer this knowl-
edge comes as something of 2 blow,
since pattern recognition is a task at
which computers are as vet woefully
inept when compared to humans. The
difficulties in creating an effective pos-
ition evaluator and plausible-move gener-
ator are enormous, particularly when
one bears in mind that the nature of
chess is such that the failure to make
one important move is often sufficient
to lose the game, and clearly any move
which fails an initial plausibility analysis
by the program will never be played.
However before considering more fully
the problems posed by position evalu-
ation, let us first examine how the com-
puter actually goes about selecting a
specific variation as the best available.

Growing trees
Shannon suggested thai the program
adopt the ‘minimax’ procedure first

proposed by Morgenstern and von
Neumann in their work on game theory.
Basically, the program grows a ‘tree’ of
variations. An example of a simplified
game tres is given in figure 2, which
starts from the initial position with
white to move and assumes that some
form of static evaluation function
awards positive values to positions
favourable to white and negative num-
bers to positions favourable to black.
The program assumes that, at each
branching point (or ‘node’), the plaver
who has the move will select the most
promising alternative. That is to say
that, when it is white to move (odd
nodes), the program selects the variation
leading to the largest evaluation, and
with black to move (even nodes) it picks
the branch which gives the smallest
evaluation.

The program first examines 1. e2-e4,
e7-e5 2. Ngl-f3, Nb8-c6, evaluates the
resulting position and storss the value
thus obtained. Next it proceeds to
evaluate 1.e2-e4,e7-e5 2. Ngl{3, d7-d6,
and compares the result with that
obtained for node 5. The lower of the
two values is obviously best from black s
point of view (remember that it is
black’s move and the program is mini-
mising at even nodes) and so that value
is ‘backed up” to its immediate parent
node (node 4). The program then pro-
ceeds to successively examine the two
terminal positions (8 and 9) arising from
node 7, evaluates them both, and backs
the smallest of the two up fto node 7.
This procedure is repeated until the best
‘backed-up’ values for nodes 11, 14, 19,
22, 26 and 29 are obtained. Next the
program maximisés at nodes 3, 10, 18
and 25 lo find the best white move at
that level. This process is continued,
‘minimaxing’ back up the tree, until the
best move for the current position is
determined.




computers and chess

elektor january 1979 — 1-37

Figure 2. A simplified game trea,

Although this procedure seems Tlogical’,
a full-width search to the depth shown
here (4-ply) would produce, on average,
some two million terminal positions for

evaluation. Fortunately, subsequent
research showed that techniques can be
employed which result in a substantial
pruning of the game tree. A more funda-
mental problem, however, is presented
by the ‘bottom line’ of the tree: in
order to select good moves, the program
must first evaluate the terminal pos-
itions.

Evaluating positions

Shannon’s paper provided a simple
example of an evaluation function which
could be applied to static positions. Not
surprisingly, the greatest weight was
given to material balance and the rela-
tive value of the pieces were assessed as
200, 9, 5, 3 and 1 for the king, queen,
rook, bishop/knight and pawn respect-
ively. Positional evaluation was then
incorporated by penalising doubled,
backward or isolated pawns (= —%)
and rewarding mobility by adding 1/10
for every legal move. Shannon also
suggested additional features which
should be included in the evaluation
function, such as control of centre,
open or semi-open files, passed pawns,
pawn structure around the king, and so
on. It is important that one arrive at an
accurate weighting of the various factors
in the evaluation function, and this is in
fact one of the most difficult problems
the chess programmer faces.

Early programs in particular exhibited
an alarming tendency to bring out their
queens very early in the game, since this
greatly increased their mobility score.
However, as any beginner quickly
Iearns, this is usually poor strategy . . .
The problem of writing an efficient
evaluation function is compounded by
the fact that the importance of certain

positional features changes during the
course of the game, Furthermore, a
particularly thorny problem is the
difficulty in assessing whether a ‘ter-
minal’ position is truly ‘quiescent’, or
whether it in fact occurs, say, half way
through a series of exchanges. As men-
tioned, most programs attempt to
resolve the latter problem by performing
an additional search for all checks and
captures until these are exhausted. How-
ever, this approach is at best a makeshift
solution, since it fails to deal with
purely positional manoeuvres which a
strong human player would examine as
part of his evaluation of the position. in
the position in figure 3, for example,
the most significant feature is the ‘hole’

in Black’s position at ¢6 to which White
can manoevre his knight on f3. It js
important that Black prevent this by
playing BhS x f3. However, this is
extremely difficult for a program to
perceive.

A further problem associated with
evaluation functions is that many pro-
grams contain an ‘opening book’ (i.e.
lists of standard opening variations)
which has been included by the pro-
grammers to ensure a reasonable pos-
ition from the opening. However, due to
the unsophistication of the program’s
evaluation function, when the book
runs out and the program has to start to
think for itself, it naturally assesses the
position quite differently from the
Grandmaster whose game (or analysis)
it is following. It therefore spends the
next few moves re-arranging its pieces
until they correspond with the evalu-
ation function’s idea of where they
should be!

Computers are greedy

A typical fault of most programs is that
they are excessively materialistic (even
the Russian programs succumb to this
capitalist evil) and are extremely loth to
sacrifice a pawn or even a piece for less
tangible, positional advantages. A start-
ling exception to this rule occurred
however in the first World Computer
Chess Championships held in Stockholm
in 1974. '

program called Chess 4.0, written by
three former students of Northwestern
University: Larry Atkin, Keith Gorlen
and David Slate. In the second round
Chess 4.0, which hitherto had been
undefeated by another program reached
the following position (as black) against
another North American entry, CHAOS:

Black is a2 pawn ahead, having greedily
consumed white’s king pawn, however
he is behind in development, and in
particular is not vet castled. White seizes
the opportunity to make a decisive
piece sacrifice. What is surprising about
this offer is that it must have been based
on a purely posirional evaluation of the
resulting position, since the program
could not possibly have szen sufficiently
far ahead to ascertain that he would
eventually more than recoup his invest-
ment
16. Nd4 x e6!

This move has been praised as ‘the finest
ever played by a computer’

f7xe6
17. Qe2x e6+ Bdé-e7?
18 Rdl-e] 0b8-3d8
19. Bel-f4

The threat is Bf4-c7

{4 Ke8-18
20. Ral-dl Ra&-a7
21. Rdl-cl Ni6-g&
22. Rel-d! ag-g5

Black has no good moves, white has a
stranglehold on the position

23. Bf4-dé Be7 x d6
24. Qe6xd6+ Ng§e7
25. Nad-c5 Bg6-15
26. g3-g4 Qd&-e8
27. Bb3-a4 b4-b3
28 gdxf5

And white eventually won, although it
took another 47 moves to do so.

Horizon effect v. snow-blindness

Selecting a suitable search depth also
creates a number of problems when
evaluating positions deep in the game
tree. A particularly harrowing example
of the fate that can befall a program
when faced with a choice of egually
promising continuations occurred in a
—now notoricus — game between two

Favourite to win was a North American

programs called COKO and GENIE



1-38 — elektor january 1979

computers and chess

which was played during the second
ACM tournament in 1971, After the
first 27 moves the following position
was reached with COKO (white) to
play:

COKO thought for 120 seconds and
offered a pawn to entice the black king
out into the centre:

28 c¢d4-c5+ Kd6xe57?
Too greedy! COKO, having seen ahead
the next 8% moves, played:

29 Qedd4+ ...
And announced mate in 8!

i e Kc5-b5
30. Ke2-dl + Kb5a5
31. b2-b4 + Ka5-a4
32. Od4-3 Re8-d8 +
33. Kdi<2 Rd8-d2 +
34. Ke2xd2 Ra8-d& +
35. Kd2-¢2 Rd8-d2 +

Black’s last four moves are a classic
example of a typical computer weak-
ness which is called ‘the horizon effect’.
Since the program’s evaluation function
scores the mate, i.e. the loss of its king
as being very much worse than anything
else that can happen to it, it indulges in
a rather disarming piece of self-decep-
tion; it attempts to postpone the evil
hour by sacrificing whatever comes to
hand and so push the mate beyond the
horizon of its look-ahead! Two rooks
down is better than mate it thinks,
however it doesn’t ‘realise’ that it can-
not prevent mate anyway.

The horizon effect is an extremely
difficult problem inherent in all pro-
grams, particularly those with a short
look-ahead. Any combination or ma-
noevre which is longer than the look-
ahead will be misperceived by the com-
puter. However, just for once, maybe
the program knew what it was doing,
for there then followed:

36. Qc3xd2? Kad4a3
Still after the pawns!
37. Qd2<3+ Ka3 x a2

White now has a choice of two mates
in one (Bfl-c4, Qc3-b2) and a large
number of mates in 2, 3, 4 etc. Unfortu-
nately, COKO seemed unable io dis-
tinguish between the value of so many
promising lines, and it made a random
choice between the mating continu-
ations:

38. Ke2-cl 2
Black, not having much else to do
played

I8 f6-£5

39. Kcl-<c2 1514

40. Kc2-l g5-g4

41, Kcl-<2 1413

42. Kc2-cl f3xg2

43 Kel-c2

One can imagine the angulsh of COKO’s

43 g£2xhl=0Q
This is now COKO s last chance, does he
take it?

44. Kc2-cl %3
Alas no. GENIE now play ed

44. . Ohl x f1 +
whereupon whxte s game started to fall
apart, COKO’s unfortunate masters
could soon stand it no longer and re-

signed for their disgraced offspring.

Pruning the game tree

As was mentioned, a full-width search
strategy to a depth of even a few ply
rapidly generates an enormous number
of terminal positions. However, in 1938,
three researchers at the Carnegie Insti-
tute of technology, Alan Newell, John
Shaw and Herbert Simon, published a
paper which demonstrated that the
number of positions which it was
necessary to evaluate could be drasti-
cally reduced with the aid of a relatively
simple algorithm. To understand how
this is done let us look at the simple
game tree of figure 2. If we propose a
crude evaluation function of material
balance, mobility (+0.1 for each legal
move), centre control (+0.2 for each
centre square, i.e. e4, d4, e5, dS, at-
tacked) and king safety (defined as the
number of moves required to castle:
subtract 0.5 per move), we obtain the
values shown.

To select its move the program first
examines terminal positions 5 and 6,
then backs up the smaller value to
node 4 (+0.1), as explained earlier. The
two positions descended from node 7
could then be evaluated, and the best

backed-up value for if obtained (—0.5).
However, since the program will maxi-
mise node 3 (white to move), we know
that the best backed-up value for it will
never be less than +0.1, since the pro-
gram would always select the branch
leading to node 4. Thus, having found
the value for node 8 (—0.2), the pro-
gram can deduce that it is pointless to
generate and evaluate node 9: the evalu-
ation for node 8 is already smaller than
that backed up to node 4. The same
argument can be applied throughout the
game ftree, resulting in a substantial
pruning in the number of nodes re-
quiring evaluation.

To obtain the full benefit of this pro-
cedure, it is important that the program
examine the best moves first. Many
moves fail to an immediate and obvious
reply — the loss of one’s gueen for
example. Clearly if the queen capture is
generated and evaluated first, then it
substantially reduces the number of
nodes for subsequent evaluation. Mod-
ermm programs all contain a number of
‘heuristics” (rules of thumb) which pro-
vide the computer with information on
the type of move it should examine
first.t One common heuristic involves
the program storing refutation or killer’
moves which were effective for pos-
itions earlier in the tree and testing to
sece whether they still work. Unfortu-
nately, one effect of the capture heuris-
tic is to make programs avid exchangers
of pieces. Many programs dissipate an
advantage by allowing the opponent to
free a cramped game by trading off
pieces. (See game 1 of Levy v. Chess
47)

A number of addltmml techniques for
speeding up the tree search have also
been developed in recent years, and the
full-width search has become a feasible
proposition, However the fact remains
that, with a type-A strategy, the pro-
gram is searching blindly on a trial-and-
error basis, generating and evaluating an
enormous number of largely irrelevant
positions. The computer is unable to
formulate any sort of plan or, for that
matter, recognise the plan of its op-
ponent. It is at the mercy of the necess-
arily over-generalised positional factors
of its evaluation function, and its vision
is limited to a fixed-depth look-ahead.
For this reason early programs in par-
ticular were atrocious at playing the
endgame, often being unable to win
such elementary positions as king and
queen or rook against king. Unfortu-
nately their human opponents were
often unaware of this fact and resigned
prematurely!

How (not) to play the endgame

Most evaluation functions are oriented
towards opening- and middlegame
features (such as development, control
of centre, etc.), whereas the endgame
demands the ability to perceive a win-
ning process. Often the winning plan
will take twentv or thirty moves to
execute, effectively ruling out the possi-



computers and chess

elektor january 1979 — 1-39

bility of the program stumbling across it
in a full-width search., To the human
this presents no problem because it
simply becomes a question of im-
plementing an idea, manoeuvring a piece
to a key square, etc. The computer how-
ever does not have ideas, so it just sits
there churning through tens of thou-
sands of positions which all look pretty
much the same to it anyway. A com-
monly cited example of the problems
presented by the inability of programs
to apprehend the salient features of a
position, combined with a necessarily
limited look-ahead, is shown in figure 6.

Any beginner faced with this elemen-
tary position would instantly recognise
that the black king is too far away to
prevent the white rook’s pawn from
queening. Unfortunately, if the program
has a look-ahead of less than 9-ply it
will fail to appreciate this fact, and
assessing the position on the merits of
material inequality, will decide that
black has the advantage! Even with a
9-ply search it calculates the following
variation: 1, a2-a4, h7-h5 2. ad-a5 h5-h4
3.a5-a6, h4-h3 4. a6-a7, h3-h2 +
5.Kegl x h2. Black, by sacrificing the
h-pawn has succeeded in pushing the
pawn promotion over the program’s
horizon. However white will neverthe-
less select this line because it wins a
pawn! The inability of the program to
form a respectable plan is painfully
embarrassing.

It seems likely that an alternative
approach will have to be adopted for
the endgame, and indeed promising
work has been done in Russia on wriling
programs for specific types of endgame.
David Levy lost a less well-publicised
bet of a case of Scotch that the pro-
grammers of KAISSA would be unable
to write a program which played the
ending of king, rook and pawn against
king and rook correctly for both sides
before the end of 1975.

What of the future?

Despite the inherent problems of a
Shannon type-A strategy, there is no
doubt that programs employing this
technique have been making progress
over rtecent years, whereas the diffi-

culties involved in the development of a
reliable plausible-move generator have
remained largely intractable. In particu-
lar, Chess 4.7, the primary exponent of
the type-A strategy, is gradually acquir-
ing a rating near to that of an Expert of
the US Chess Federation grading list,
and more spectacularly has beaten an
International Master under tournament
conditions (as well as beating a Grand-
master in a blitz game) — see David
Levy’s article in this issue.

However these advances are to a certain
extent due to progress in hardware
— faster, more powerful computers —
and more efficient programming tech-
niques which increase the look-ahead
of the program to a point where brute
force exhaustive analysis is disguising its
conceptual inadequacies.

In the endgame in particular much work
remains to be done. The computer is at
its weakest in quiet non-tactical pos-
itions where it cannot utilise the fact
that, unlike humans, it never miscalcu-
lates a line, forgets about a piece en
prise etc.

Nonetheless it cannot be denied that
chess-playing computers are getting
stronger and the best of them could
defeat most average club-players. Esti-
mates as io how long it will take before
they play World Championship level
chess are extremely difficult. The most
popular guess is somewhere in the region
of 10 to 20 years, although this may
well prove to be wildly inaccurate (in
1958 Simon predicted that there would
be a computer program as World Cham-
pion within 10 years).

Literature:

Bell, Alex G., ‘The machine plays chess’.
Pergamon Press 1978.

Frey, Peter, ‘Chess skill in man and
machine’.

Springer Verlag, New York 1977.
Levy, David, ‘Chess and computers’.
Batsford chess books, 1976.
Shannon, Cigude, Programming a
computer for playing chess’.
Philosophical magazine, vol 41,

pp 256-275, March 1950.

chess
challenger 10

plays like a human

The introduction of Chess Challenger 10
is an excellent ‘state of the art’ example
of the space-age technology and almost
human capabilities that can now be
built into these computerised board
games, It features no less than 10 levels
of play:

Average
Level Reasponse
Time
1. Beginner 5 seconds
2. Intermediate 15 seconds
3. Experienced 35 seconds
4. Advanced 1:20 minutes
5. Superior 2:20 minutes
6. Mate in Two (two
move puzzles and
end games) 1 hour
7. Postal Chess 24 hours
8. Expert 11 minutes
9. Excellent 6 minutes
10. Tournament Practice 3 minutes

The levels are interchangeable at any
time and during any move of a game
and the player can select offense (light
pieces) or defense (dark pieces) at the
touch of a key.

A new feature of Chess Challenger 10 is
its ability to play and follow a patterned

classic book opening,
French, Ruy Lopez,
Declined and so on.
Computer technology is growing so fast
that the microprocessor ‘brain’ in Chess
Challenger 10 can now analyse up fo
3,024,000 board positions before
making its move — a logic capability
equal to the instinctive ability of even
very experienced plavers.

An override key permits the player io
make multiple moves before the com-
puter responds and also permits the
addition or subtraction of any piece to
either side. Ideal for cheating!

Chess Challenger 10 sells for £ 200. M

e.g. Sicilian,
Queen Gambit




