Exotica such as the king ripple
and the pawn-advance routine
are two of the techniques John
White has incorporated into his
entertaining chess program in
Basic, End-Game.

END-GAME has been written in Basic to
~~~mplement the draughts program J-Checkers,
ablished in the October issue of Your

Computer. It exemplifies the method of move |

assessment known as iterative deepening.

I have chosen the end-game of chess as a
model because it limits the number of pieces
used and because the concept of mobility —
essential in full games of chess — can, at a
pinch, be ignored to keep the time taken for
the game within manageable limits. I have

eschewed fancy time- or memory-saving tricks |

for clariry.

Having tested this program, I have sausfied
myself that it is not possible to write a
satisfactory program for playing a chess end-
game using a look-ahead of only two-ply. I
hope this information will be of use to those
contemplating writing their own chess
programs.

End-Game does, however, play a frac-
tionally more sensible chess end-game than
many of the weaker chess computers available

commercially, bearing in mind the fact thar a |

compiled version would run in abour rwo
seconds. The interpreted Basic version
presented here requires an average of two
minutes a move.

30 YOUR COMPUTER, DECEMBER 1381

The end-game of chess is hard for a human
to play well, but very difficult indeed for a
chess computer. A human can easily see at a
glance what will happen six 10 seven moves
ahead for both sides — grandmasters can see
much, much more,

A chess computer will normally only analyse
two or three moves ahead — four- to six-ply —
although one or two of the most modern
machines switch in extra routines for the end-

game when sufficientdy little material remains |

on the board. Under these circumstances up to
five moves ahead —
evaluared. Even so, the play is sull weak by
human standards. The classic problem is that
shown in figure 1.

It is possible for a human 1o see at once that

black’s only sensible move is K-B6 — or B8 or |
B7. Anything else loses the pawn to white’s |

attacking king. I shall avoid the problem of
whether black can win even if he does save the
pawn. Yet very few chess computers can see
this solution, and most play pawn endings
very badly, moving pieces almost at random.
Since the necessary deep search to play a
good end-game is very time-consuming, I have
tried in End-Game to produce an evaluation
function which will play a recognisable end-
game superior to that of most chess computers

but using only a two-ply search. Essentially I |

have relied on the well-known maxim of
“Push a passed pawn™.

End-Game is written in Basic which
imposes its own stunning restriction on what
can be placed in the program: interpreted
Basic runs some 200 times more slowly than

10-ply — may be |

the machine code used in chess computers and
a complete game of chess is our of the
question. Restricting the pieces to pawns and
king only gives a respectable game with a clear
objective: advancement of a pawn to the eighth
rank.

The first player to do this has essentially
won at chess, and has won End-Game out-
right. It may be noted that the powerful
Sargon 2.5 and Morphy chess programs also
adopt this policy in their end-game play, and
will make any sacrifice to delay the arrival of
an enemy pawn on the eighth rank.

End-Game uses a single subroutine to
evaluate the position arising after each move —
instead of evaluating the merit of ezch move
itself, a straregy employed in other published
games. The moves of each piece are generated
by the program which assigns a score to the
position arising from each move ar the first
level of search — one-ply.

The moves are then sorted, using a fast-sort
routine which arranges the score in order of
decreasing merit. The moves creating the
scores are also rearranged, of course.

The program now calls itself — an example
of recursion in Basic — to generate the

Figure 1. The classic chess problem.

responses 1o its sorted moves. It assumes that
the opponent will be trying to maximise his
score, and thus minimise the machine’s score.
So the best — lowest-scoring — opponent
move is stored in location.

This is combined with the first-ply score
and compared with the highest total yet found
for a program move, which is stored in
location R(0). R(0) is continually updated as
better moves are found for the machine —
moves for which the opponent can find only
weak responses.

An important feature of this search is the co-
called “alpha-beta pruning”. If any opponent
response makes the machine’s move under
consideration worse than a previous stored
machine’s move, then there is no need for the
machine to consider any further responses by
the opponent to the machine move under
consideration. The flag “AB” is set to 1,
which stops any further searching of that
MmOove.

Alpha-beta pruning can save a good deal of
unnecessary searching and thus a great deal of
nme. It is widely used in chess computers
today. To be most effective, it is best to

| consider the most-likely-best machine move

first, and also the most-likely-best opponent
response.






